

CAPTAIN: Automatic workflow manager

Arnaud Pin PhD, Researcher

Orthanc Con 13-16 December 2019 Liège (BE)

Outline

- CAPTAIN, the origin
- Why working with Orthanc?
- Interface Orthanc-CAPTAIN
- Workflow manager structure
- Application examples
- Who use it?

Context

- Research activities in proton therapy:
 - Dedicated to increase indication for proton therapy
- Need tool to support research activities:
 - Imaging: image quality to compute proton dose
 - Clinical workflow: how to go to adaptive proton therapy
 - Comparison Proton therapy (PT) with photon therapy (RT)
- Need platform to support research
 - CAPTAIN Orthanc platform.

What is CAPTAIN?

Open-source platform:

- Automatic workflow manager.
- Web-based
- High Modularity

Interfaced with Orthanc:

Dicom PACS used as dicom interface

Interfaced with Stone of Orthanc:

Dicom web viewer used for online results review

What is CAPTAIN?

DICOM instances

On any web-browser

Why Captain was developed?

Origin: - Research project with University of Pennsylvania Proton therapy center.

- Computation of Proton therapy clinical indicators based on the virtual CT.

Acquire CBCT

Manual transfert data

researcher physically move

Load data configure indicator run analysis in MatLab

Review results individually in Matlab

Time consuming.
Non efficient.
High risk of Human error

Why Captain was developed?

Origin: - Research project with University of Pennsylvania Proton therapy center.

- Computation of Proton therapy clinical indicators based on the virtual CT.

Acquire CBCT

Data transfered automatically from Al

Matlab run automatically on a server No need of user connected

Review results on web-browser

Need of a DICOM PACS

Requirements:

- A Dicom interface to receive data from imaging system, TPS and OIS:
 - PT/RT plan
 - PT/RT dose map
 - Structure set
 - CT CBCT vCT 4DCT
- Open-source tool
- Dicom standard interface
- Web API available

Requirements:

- A Dicom interface to receive data from imaging system, TPS, OIS and to store dicom results
- Open-source tool
- Dicom standard interface
- Web API available

Requirements:

- A Dicom interface to receive data from imaging system, TPS, OIS and to store dicom results
- Open-source tool
- Dicom standard interface
- Web API available
- Dicom web-viewer for workflow result review

In practice:

Image acquisition

Treatment planning system (TPS)

- 1. Data received on dicom interface (port 4242).
- 2. Orthanc server parse received data:
 - Lua script on Orthanc server
 - Notification to CAPTAIN (patient ID, study ID) on REST API
- 1. CAPTAIN received notification from Orthanc.
- 2. CAPTAIN request detailed information:
 - Contact orthanc API (port 8042)
 - Retreive all information needed to trigger WF.
- 3. CAPTAIN launh computation WF:
 - Contact Orthanc API to download dicom files (series/instances) – Plan, CT, structure set.
- 4. CAPTAIN post Dicom result on Orthanc PACS
 - Upload dicom result to Orthanc PACS

In practice:

- 1. Data received on dicom interface (port 4242).
- 2. Orthanc server parse received data:
 - Lua script on Orthanc server
 - Notification to CAPTAIN (patient ID, study ID) on REST API

Orthanc Web API
Key feature of Orthanc
In CAPTAIN application

- CAPTAIN received notification from Orthanc.
- 2. CAPTAIN request detailed information:
 - Contact orthanc API (port 8042)
 - Retreive all information needed to trigger WF.
- 3. CAPTAIN launh computation WF:
 - Contact Orthanc API to download dicom files (series/instances) – Plan, CT, structure set.
- 4. CAPTAIN post Dicom result on Orthanc PACS
 - Upload dicom result to Orthanc PACS

CAPTAIN workflow manager

1. Web-based interface

4. Workflow configuration

- 2. Access list of Patient:
 - Orthanc patient are automatically added in the app
 - Not All patient are in Orthanc (depend if presence of DICOM data)
- 3. Display (by extending) workflow available for each patient

5. Trigger the workflow manager:

- When new data arrives on Orthanc -> Automatic
- When new WF configuration
- When force by the user

CAPTAIN workflow manager

Process:

From the researcher. C/C++, python, MatLab, ...

Can be use in standalone

Task:

Load all input needed for the process, input json Launch the process
Retreive and store data

Workflow:

chain of tasks

Contains rules to start the workflow.

Trigger each task sequentially. Save all data.

Application:

Workflow(S) to tackle the issue

CAPTAIN workflow manager

Clinical indicators:

Radiation Oncology biology • physics

www.redjournal.org

Lingshu Vin PhD 1 James Metz PhD Timothy D Solberg PhD

Clinical indicators:

- Clinical indicators:
 - Partner: UPENN
 - 1st application (April 2017)

- Version to display in Adapt insight (IBA imaging software for CBCT acquisition and Patient poistionning)
- Version connecting to Raystation (TPS)
 - (demo at ASTRO 2017)
 - https://www.youtube.com/watch?v=edU5OTCWsP4

- Dose restoration (adaptive therapy):
 - Partner: KUL/UCL

Dose restoration aims to stabilize the dose i.e. restore the clinically approved IMPT dose distribution on the treatment day, independently on anatomical changes in patient

Planning CT (robust plan)

Repeated CT (anatomy change)

Restored dose on repeated CT

- Dose restoration (adaptive therapy):
 - Partner: KUL/UCL

PAPER Feasibility of online IMPT adaptation using fast, automatic and robust dose restoration Kinga Bernatowicz¹, Xavier Geets^{1,2}, Ana Barragan¹, Guillaume Janssens³, Kevin Souris¹ and Edmond Sterpin^{1,4} Published 20 April 2018 • © 2018 Institute of Physics and Engineering in Medicine Physics in Medicine & Biology, Volume 63, Number 8

vDR: voxel-based dose restoration DR: DVH-based dose restoration iDR: isodose-based dose restoration

- Dose restoration (adaptive therapy):
 - Partner: KUL/UCL
 - Prototype January 2019
 - 4 workflows.
 - Online adaptive.

(5) Review on web interface

CDSS (NTCP automatic computation)

NTCP models **CDSS** 100% Radiation Oncology 90% NTCP models 80% validated $\triangle NTCP = NTCP_{\Phi} - NTCP_{D+}$ 70% ANTCP by academia 60% **Prediction of DELTA Normal** 40% Contents lists available at ScienceDirect tissue complication Radiotherapy and Oncology 30% probability journal homepage: www.thegreenjournal.com 20% △Dose A predictive model for swallowing dysfunction after curative radiotherapy 10% in head and neck cancer Johannes A. Langendijk a.b., Patricia Doornaert a. Derek H.F. Rietveld a. Irma M. Verdonck-de Leeuw c. C. René Leemans c, Ben J, Slotman a 70 10 20 Dose (Gy) 🥒 · Langendijk, J. A., et al.. (2009). A predictive model for swallowing dysfunction after curative radiotherapy in head and neck cancer. Radiotherapy and Oncology, 90(2), 189- Jackson, A., et al. (2010). The Lessons of QUANTEC: Recommendations for Reporting and Gathering Data on Dose-Volume Dependencies of Treatment Outcome. PT Dose map International Journal of Radiation Oncology Biology Physics, 76(3 SUPPL.), 155-160. • RT Dose map

23

- CDSS (NTCP automatic computation):
 - Partner UMCG (Groningen Netherland) Miami Cancer institute
 - 1st prototype prior Astro 2018
- Aim
 - Provide Automatic computation of probability of complication after radiation therapy.
 - PT/RT comparison
 - Based on delivered dose
 - NTCP models published

- CDSS (NTCP automatic computation):
 - Partner UMCG (Groningen Netherland) Miami Cancer institute

1st prototype prior Astro 2018

NTCP models validated by academia

https://www.youtube.com/watch?v=O 9vtF0x90wE&t=8s

- Log-based QA:
 - Partner: UMCG
 - Prototype started spring 2018 last update September 209

- Automatic dose recomputation with secondary dose engine
- Dose recomputation based on irradiation log for QA
- → A lot of data stored on Orthanc.
- → Used of stone of Orthanc dicom viewer

Log-based QA:

My QA ions

From the log-based QA workflow

- Based on same code for the computation
- Same architecture (JS to java).
- Use Orthanc as PACS.
- Continue observing evolution at UMCG to help defining roadmap in dosi.
- Show interest in features:
 - NTCP computation
 - Machine file QA

Product developed by IBA Dosimetry

Use of Stone of Orthanc

- Major feature of the platform.
- Web-based dicom viewer
- Allow fusion and overlay

Review of:

- image produced: vCT vs CT/CBCT
- Dose map computed
- LET map
- Gamma map

Monte-Carlo dose map

LET dose map

CAPTAIN – Orthanc users

N°	Status	User name	Installation	Location	Contact person	Installation by	Version date	Purpose
1	installed	UPENN	juil-17	Philadelphie		RLA - API		Clinical indicators
2	Installed - Active	UMCG	Feb 2018	Groningen	API	Done internally - API		QA - decision support
3	Installed - Active	MIRO	March 2019	BXL - St Luc		API		Dose restauration
4	installed	UFPTI	July 2018	Jacksonville		RLA - LHO		??
5	in progress	UZL-KUL	sept-19	Leuven	RLA	RLA-LHO-API		CDSS
6	compiled	Chicago	Jul 2018	Chicago	LHO	remote LHO		CDSS
7	in progress	Chicago	Oct-19	Chicago	LHO-API	remote		CDSS in CAPTAIN (for robust comparison)
8	Installed	BHSF	sept-19	Miami	API	remote by site engineer		CDSS in CAPTAIN
9	planned	Beaumont	Oct-19	Royal Oak	API	remote		CDSS in CAPTAIN

CAPTAIN – Orthanc: supported by openpath

- CAPTAIN is a central piece of OpenPath
- The open source research strategy: https://openpath.software

So what is CAPTAIN

The CDSS

The Log based QA
NO

Clinical indicatorsNO

OpenPath

It is a tool.

A web-application providing an automatic workflow manager

YES

Fully customizable
Could be use for other purposes than PT clinical workflow

Conclusion

- CAPTAIN is an open-source platform for research.
- Orthanc is used as Dicom PACS for CAPTAIN application.
- Orthanc web API is a key fetaure in our application
- High value with the Lua scripting in Orthance
- Results display with Stone-of-Orthanc Dicom web viewer
- Used for research in proton therapy
- Multiple research center use it.

More to come ...

Thank you