
RadioLogic
a case-based learning and self-assessment tool for the Orthanc

Ecosystem for Medical Imaging

Marco Barnig

1. Introduction
• A few years ago, my son in law, Guillaume Bierry,

who is professor of radiology at the university
hospital in Strasbourg, asked me if I could create a
teaching tool for medical students, based on real
clinical cases

• Wanted : Tool including a real DICOM viewer to
visualize whole medical imaging studies

• Challenge : OFUR (outil de formation universitaire
radiologique)

• Reference : application about prostate cancer
imaging developed by professor Philippe Puech
from Lille

• Case-based learning is an efficient method for
radiologist education

2. My background

• 1974: research assistant at the Federal
Institute of Technology in Zurich > first
microprocessor Intel 4004

• 1978: POST Luxembourg > new
telecommunication services : Alarmis,
Euronet, Luxpac, Videotex, ISDN, LUXGSM,
Internet

• 1993: responsible for sales and marketing of
all telecommunications services

• 1998: first personal website

• 2013: retirement > time, experience,
hardware, independence

3. OFUR

• Orthanc as PACS

• Cornerstone or DWV as HTML viewer

• Focus on iPAD and Mac

• 3 targets : students, radiologists, MD

• 3 products : OFUR-chu, -lite, -pro

• Interface language : English

• License: open-source

• No medical certification

• Comply with data protection rules

• Project development : 5 steps

• Development duration : 12 months

• Project hosting : Amazon Web
Services

• Personal assessment facilities

• Usage without Internet access

• Low costs

Mid 2015 : first prototype of OFUR-lite, based on the Cornerstone framework

4. Clinical cases

August 2015: tests with first clinical case

Issues:

• The download time was high

• Large CR files could not be handled on
iPAD’s

• The cornerstone framework
supported only ASCII characters

• CORS was required to make requests
across domain boundaries

The DICOM files for
the clinical cases
and the integration
of the pictures in
DICOM files were
assembled with
Osirix

• MSK session with
5 clinical cases

• SPINE session
with 3 clinical
cases

5. DICOM is easy

To solve the mentioned issues, it was necessary to dive deeper into the DICOM standard:

• Open-source toolkit DCMTK provided by OFFIS e.V. from Germany

• GDCM, an implementation of the DICOM standard developed by Mathieu Malaterre

• Dicom3tools package created by David A. Clunie

• DVTk editor and other DICOM tools

Roni Zaharia, CEO of H.R.Z. Software Services LTD, maintains a blog "DICOM is easy“,
including an outstanding tutorial about DICOM. For me DICOM was not easy, but a
nightmare.

Despite the steep learning curve, I gradually got the necessary knowledge to manually
process the DICOM files to reduce their size by compressing and scaling the images. I
learned how to manage private tags to save information about the possible and correct
diagnoses. I forked Chris Hafey’s DicomParser to support UTF8 characters. To enable CORS I
added a reversed proxy (nginx) to the Orthanc server.

6. Name & Logo

All the blocking issues were solved at the
end of 2015:

• Decision to progress with the project

• Choice of a definitive name

• Design of a logo

Early 2016:

• Final project name > RadioLogic

• Logo > old-fashioned x-ray film viewer

• Domain name > radiologic.fr

• Website > hosting at AWS

7. RadioLogicTutor I

A stable version of the
RadioLogic viewer, called
RadioLogicTutor, was ready in
mid-2016.

1. Login/Logout > ID and pw
saved inside browser

2. About > credits

3. Settings > Orthanc location,
system preferences

4. Cases > choice of session
and clinical case

8. RadioLogicTutor II

5. Observation > clinical data about the patient with free text in a grey/color image

6. Images > four viewports, thumbnails-bar for DICOM series, drag and drop

9. RadioLogicTutor III

7. Diagnosis > multiple choice radio-
buttons, submission

8. Answer > grey or color image
explaining the correct diagnoses with
free text and pictures

9. Results > user progress and
performance in graphical form
(assessment), comparison with peers

10. Help > hints and info how to use
the application

10. OrthancPi & OrthancMac

Early 2016, I ported the Orthanc source
code to the Raspberry Pi, a credit-card–
sized single-board computer

• Proof of concept

• Tests with models B Pi1, Pi2 and Pi3
and different WiFi adapters

In parallel, I compiled the Orthanc
source code for OS X

• MacBook as DICOM archive

• OS X El Capitan

11. RadioLogicCreator on Mac I

Assembling, processing and checking selected DICOM files manually with a half-
dozen different tools to create clinical cases was cumbersome and not error-proof
Mid 2016: tool to automate
the process on Mac
• C, C++, Objective-C or

Swift 3
• Experience with Java, PHP,

Python, Javascript
• Four steps: compression &

scaling, customization,
private tags, uploading

End 2016 : 1st stable version

12. RadioLogicCreator on Mac II

The RadioLogicCreator tool running on Mac was a continuous source of frustration
for the users and the developer, for the following reasons:

• Deployment was difficult due to the severe security restrictions of Apple, despite
the signature of the app by me as certified developer

• At each change of the OS X, it was necessary to adapt the application to new
rules: El Capitan, Sierra, High-Sierra, Mojave, now Catalina

• The processing of DICOM files in four steps was synchronous and it took some
waiting time before the creation of a clinical case was finished

• The main problem was the connection between the MAC computers running the
RadioLogicCreator tool and the Orthanc server working as a DICOM archive with
an integrated reversed nginx proxy in an ad-hoc local network

13. Improvements & Enhancements

In 2017, I looked for solutions to
tackle the network issues:

• CornerstoneArchiveImageLoader
to store clinical cases in zipped
archives inside the browser (new
HTML5 technologies: indexedDB)

• Installation of Orthanc inside a
Docker container

• Replacement of the MacBook,
used from time to time as
Orthanc server, by dedicated
hardware: Synology diskstation

14. The last mile

After RadioLogicTutor, RadioLogicArchive
was the second component of the
RadioLogic system which was ready for a
real-life deployment. The last
component, RadioLogicCreator, was still
waiting for improvement.

In July 2018, version 1.4 of Orthanc was
released including a new advanced job
engine and new metadata options. I was
convinced that a plugin, using
asynchronous jobs to create clinical
cases, would solve all remaining
problems, at least most of them.

15. RadioLogicCreatorPlugin
• HTML5 - Javascript

webpage in the
colors and style of
the Orthanc explorer

• Similarity with the
RadioLogicCreator
OS X tool

• Creation of clinical
cases with added
Orthanc buttons

• Drop zone to upload
external DICOM files
recursively

16. Plugin Functions I

The program code of the plugin is a mix of the following elements:

• Orthanc SDK functions (from the modules Toolbox, Orthanc, Callback and REST)

• Members of the Orthanc C++ wrapper class

• Specific C++ functions

Main functions:
• CallbackStartJob()
• RadioLogicCreator::Step()
• CustomizeClinicalCaseInstances()
• CompressAndScaleDicomImage()
• CustomizeClinicalCaseObservationInstance()
• CustomizeClinicalCaseAnswerInstance()

17. Plugin Functions II

The Step() function works in the following three states by checking and
incrementing the value of the member variable counter:

• counter == 0 : the member variable maxSteps is set to the number of instances to process. The
anonymization and customization of the instances is prepared and the function
CustomizeClinicalCaseInstances() is called a first time. The job information content is initialized.
The counter is incremented and the Step() function returns with "continue“.

• 0 < counter < maxSteps : CustomizeClinicalCaseInstances() and CompressAndScaleDicomImage()
are called at each step by passing the related instanceId. The job content is regularly updated. If
the CustomizeClinicalCaseInstances() returns an error, the Step() function returns with "stop"
(failure), otherwise with "continue“.

• counter == maxSteps : CustomizeClinicalCaseInstances() and CompressAndScaleDicomImage() are
called a last time, followed by calling CustomizeClinicalCaseObservationInstance() and
CustomizeClinicalCaseAnswerInstance(). If everything works fine, the Step() function returns with
"success“.

18. Plugin Functions III

CustomizeClinicalCaseObservationInstance() and CustomizeClinicalCaseAnswerInstance()
add the possible diagnoses and other data as private tags into the stored DICOM files. Due
to issue 140 with Orthanc core, it is not possible to insert or modify private tags inside the
Orthanc REST API's "/create-dicom" and “/modify". As a workaround I use a DICOM
template with empty private tags, replace the pixels in the template with the data of the
observation and answer image-files and modify these templates with a system call to the
Offis DCMTK tool “dcmodify”.

The answer picture and the correct diagnosis are
scrambled with javascript before the upload to the server
to prevent clever users looking at the results before
submitting their own diagnosis in RadioLogicTutor. The
whole scrambling process is not hacker proof, but I think
that encrypting the answers with public-key cryptography
would be design-overkill.

19. Learning with quizzes

The Orthanc ecosystem and the presented RadioLogic
tools are not limited to store, to view and to assess
knowledge to interpret medical images.

Technically we can use pictures presenting any real-
world problem with a related question and use
DICOM tags, or Orthanc metadata, to store the
correct answer.

A simple example is an e-learning quizz. Such quizzes
are widespread on the Internet and related to all sort
of topics : IQ tests, STEM (science, technology,
engineering, mathematics) education, general
knowledge, trivia or even fun. The answer types of
these quizzes could be multiple-choice, true-false or
open-ended.

20. Conclusions

I close my presentation with a few personal conclusions:

• A project which evolved from a minimum viable project in 2012 to an outstanding
open-source ecosystem and gave birth to a university spin-off, which occupies
now more than 12 qualified people, is a great success story. Congratulations to
Sébastien Jodogne for creating Orthanc and co-founding Osimis.

• A large project related to advanced technologies takes three times more
resources and time than the initial estimation, due to the appearence of non-
expected issues.

• The interest in new technologies can turn into addiction.

Thank you for listening.

